
 
 
 
 
 

Agentic AI 
 

  

 

 

 

 



1 

 

1 AGENTIC AI: FUNDAMENTALS 
 

1.1 Overview of Generative AI 
 
Introduction to Generative AI 

Artificial Intelligence (AI) is the field of making machines behave like humans by 
solving problems, making decisions, or learning from experience. A common example 
of AI is a chatbot that can answer your questions. Within AI, Machine Learning (ML) 
is a technique where computers learn from data instead of being programmed with 
specific rules. For example, email systems use ML to detect and filter out spam messages 
based on user behaviour. A more advanced form of ML is Deep Learning (DL), which 
uses large neural networks inspired by the human brain to handle complex tasks, such as 
understanding speech or recognizing faces in photos. Building on this, Generative AI 
(GenAI) is a type of AI that creates new content – such as text, images, music, or code 
by learning patterns from existing data. Examples include tools like ChatGPT, which can 
write stories or answer questions, and image generators that create pictures from simple 
text description often called as prompts or user prompts. 

 

 
 
 
Key features of Generative AI  

• Content Creation: Unlike traditional AI, which primarily analyzes and responds 
to existing data, generative AI actively creates new, unique content. This includes 
generating human like text, realistic images, synthetic data and so on. 

• Model Learning Mechanisms: Generative AI models are trained on vast 
amounts of data using complex algorithms, often employing unsupervised or 
semi-supervised learning techniques. This allows the model to learn from 
unlabelled data sets and generate novel outputs.  



AGENTIC AI 

2 

• Applications: The scope of Generative AI is broad, encompassing applications 
in natural language processing, digital art, music composition, drug discovery, 
and more. It enhances creativity, automates mundane tasks, and improves data 
analysis across various industries. 

 
Scope of Generative AI 
The scope of generative AI is vast and rapidly expanding. It includes: 

1. Creative Industries: Generative AI is used in art, music, and writing to create 
new pieces that mimic human creativity. Tools like DALL-E and ChatGPT are 
popular examples.  

2. Coding Assistants: Generative AI is transforming the software development 
landscape through coding assistants, IDE extensions like - GitHub Copilot, 
Amazon Q, Cline, CodeGPT, etc and AI powered IDE’s like - Cursor, Windsurf, 
etc. These tools provide real-time code suggestions, generating unit test cases, 
automate repetitive coding tasks, and improve code quality by identifying bugs 
and suggesting optimizations. 

3. Business Applications: It enhances customer service through AI-powered 
chatbots, automates report generation, and brings in optimizations in various 
processes in terms of cost and manual effort.  

4. Scientific Research: Generative AI helps in various domains with research, 
including healthcare domain where the models aid in drug discovery by 
generating molecular structures with desired properties, reducing the time and 
cost associated with traditional methods. 

5. Data Augmentation: It aids in generating synthetic data to augment existing 
datasets, improving the performance of machine learning models, especially in 
areas where original data is limited or sensitive. 

 

1.2 Overview of Agentic AI 
Remember the movie “The Matrix”? A key set of characters in this movie were “The 

Agents”. They looked and behaved like humans. But they were not flesh and blood. They 
were just code. There were a bunch of them moving about the simulated world of the 
Matrix amidst humans. They would move more efficiently than humans. They could do 
things faster than the humans surrounding them. They interacted with other agents. They 
also interacted with humans. They didn’t have emotions. They had goals. They had 
“agency”, that is, the ability to act or to choose what action to take. And they would use 
the tools at their disposal to attempt to achieve those goals. That’s pretty much what 
Agentic AI is as well. A network of Agents that can align themselves with each other or 
other tools or humans to accomplish a goal. Let’s dive deeper. 

 

1.3 Evolution of Agentic Systems 
The evolution of Agentic AI can be traced through time as follows:  

1. Traditional Programming 
2. Gen AI (Narrow AI) 
3. Agentic AI 

 



AGENTIC AI 

3 

We have mastered Traditional Programming over the past few decades. This is 
where humans have used languages like Java, C# or even COBOL to get computers to 
act in a pre-determined manner. Once you create a simple traditional program in Java 
you know exactly how it will behave for a given set of inputs. For instance, if you 
implement a simple “add” method you can accurately predict that if you give it input as 
2 and 3, you will get 5 as the output. Most of the software applications in existence as of 
now fall under this category. These programs cannot decide. But they can follow a set of 
pre-defined rules set by the programmer. Trouble brews if it encounters a novel scenario 
which the programmer had not foreseen. What it lacks in adaptability it makes up for in 
predictability or dependability. 

Simple applications of GenAI or Narrow AI came next. (We are intentionally 
glossing over Traditional AI just to keep this concise.) These are your simple applications 
of GenAI, where the overall workflow is fixed. But the output of certain LLM calls add 
a certain element of non-determinism to the overall program. Consider the simple 
example of a GenAI powered application that summarizes a document. Even if you were 
to stick with the exact same LLM, temperature, top-P and top-K settings, you could get 
a slightly different summary for each execution on the same document. The essence of 
the summary could be the same. But they would differ ever so slightly. That’s Narrow 
AI for you. Another example is where you employ a LLM to generate an image based 
on a textual description. It’s highly unlikely that 2 image generations will be exactly alike. 

Finally, we have Agentic AI at the peak of non-determinism. Here not just the output 
but even the path taken to reach the output is difficult to determine. In Agentic AI we 
develop agents with reasoning capabilities. We empower them to analyse the scenario 
and make plans. We intentionally decide to allow the agents to take certain actions on 
their own (sometimes with a human review). When properly built, it becomes difficult 
to predict with precision how exactly an Agentic System will behave for a given set of 
input. It’s not that they are chaotic. That’s not how they should be built. But since we 
are allowing the agents to reason and act it’s not unnatural for certain agentic plans to be 
surprising to the original system creators. But that’s the whole point of Agentic AI. 
Reaching the goal is important. The path taken to reach it is of secondary importance. 
 

1.4 Narrow AI vs Agentic AI 
 

Aspect Narrow AI Agentic AI 

Definition 
Uses GenAI models in 
predefined rigid workflows to 
perform specific tasks. 

Uses GenAI in flexible workflows 
for formulating the rest of the 
workflow, enabling autonomous 
decision-making and adaptability. 

Task Scope 
GenAI is limited to specific, 
predefined tasks in the overall 
workflow. 

GenAI is used to formulate the plan 
itself. The plan may further need to 
invoke other GenAI on non-GenAI 
based agents. 

Flexibility 
Inflexible; operates within a 
fixed workflow and cannot 
adjust to new situations. 

Highly flexible; adjusts workflows 
and behaviours based on context or 
unforeseen inputs. 



AGENTIC AI 

4 

Aspect Narrow AI Agentic AI 

Decision-
Making 

Certain rule-based decisions 
might be delegated to GenAI. 
E.g.: if sentiment is classified as 
positive, execute Action X, else 
Action Y. 

Higher level decisions would be 
delegated to GenAI. E.g.: which 
tools to invoke? In which order to 
invoke the tools? What info to 
obtain from the environment?  

Predictability 
Output cannot be predicted. 
But workflow can be predicted. 

Both output and workflow cannot 
be predicted. 

Use Cases 
Examples include automated 
report generation, fixed-
response chatbots using GenAI. 

Examples include self-driving cars, 
automated cloud infra remediation 
systems.  

Impact on 
Productivity 

Using GenAI appropriately in a 
fixed workflow can help boost 
the productivity of the SMEs 
using that workflow. But this 
impact will not be a lot (e.g.: 
>70%) since the humans will 
still be in the driver’s seat and 
choosing to use NarrowAI as 
the appropriate tool when 
required. 

Agentic AI when implemented 
properly can help boost productivity 
significantly. Mainly because it 
removes the bottlenecks from the 
overall workflow i.e. dependency on 
human SMEs for every choice. Only 
the important decisions can be the 
points where the system awaits 
input from SMEs. Rest of the flow 
can be autonomous. 

 

1.5 Key Concepts 
What is Agency? It’s the ability to exercise action to reach one’s goal with sufficient 

reasoning and invocation of necessary tools. It’s easier to explain with an example. A few 
years ago, I (Cladius) had my daughter enrolled in kindergarten. Her school had provided 
a soft copy of a document that had to be printed, photos of the child and parent affixed 
and then stamped by the school office on top of the snaps. This was an important safety 
measure. Most parents had printed it on an A4 page, and some had even laminated it. 
Parents were asked to carry it every time they showed up to pick up their kids. Some 
parents had folded the A4 print into an A5 size and as such made it a little less bulky. I, 
on the other hand, created a new template while ensuring that all fields mentioned by 
the school were present. I got a special approval from the school admin team for the 
new format and got it stamped. The end result? My pickup card was the size of a credit 
card that I could neatly place in my wallet. In a simple way, this is what agency is about. 
When we build an Agentic AI system, we want to simply marry reasoning with tools and 
direct it towards a goal. The real “agency” of the system is demonstrated when it breaks 
out of rigid patterns and is able to solve unforeseen problems in ways that were not 
clearly spelled out in code beforehand. 

 
An Agent in the context of Agentic AI is an entity that: 
1. Is usually powered by an AI model - often a LLM - to provide reasoning 

capabilities 
2. Has access to 1 or more Tools available for it to use to execute steps/tasks 
3. Is programmed with a Goal which serves as a guide for its steps 



AGENTIC AI 

5 

 
Example: consider an Agent tasked with obtaining and summarizing a YouTube video 
transcript. It might use an LLM like OpenAI o1 as its “brain”, a tool like YouTube API 
to fetch the transcript, and the same LLM to create the summary - all directed towards 
the singular goal of delivering a concise summary. 
 
An Agent should ideally exhibit the following characteristics: 

1. Autonomy: It can function independently, without requiring undue human 
intervention, allowing it to perform tasks on its own. 

2. Decision-Making: It has the capability to analyse information from its 
environment and decide which tools to use and in what sequence, enabling it to 
respond effectively to a variety of situations. 

3. Goal-Oriented Behaviour: It takes actions aimed at achieving specific 
objectives, aligning its efforts with the Goal that its programmed with. 
 

One of the key limitations of LLMs used to be that they could not directly interact 
with the real-world outside of receiving input (text, image, video, audio or document) 
and respond back with similar modalities of output. They couldn’t connect to a DB, or 
make an API call, or make a phone call. Hence, the onus of building tools to carry out 
these actions and “binding” them to the LLM used to be the AI engineer’s job. However, 
this trend is changing. Anthropic has integrated an optional web search “tool”1 as part 
of its LLM calls for select models. This works in a 3-step manner2: 

1. Claude decides when to search based on the prompt. 
2. The API executes the searches and provides Claude with the results. This process 

may repeat multiple times throughout a single request. 
3. At the end of its turn, Claude provides a final response with cited sources. 

 

 
Figure 1 Augmented LLM on Server side 

 
As of the time of writing this book, Claude had provisioned 2 “server” tools – Search 

& Code Execution3. But more tools and more LLM providers are bound to follow suit. 
As such, AI engineers may then have 2 options while building their systems – use the 

 
1 https://www.anthropic.com/news/web-search-api 
2 https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/web-search-tool 
3 https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/code-execution-tool 



AGENTIC AI 

6 

pre-built tools from the LLM providers OR bind your own custom tool or tools built by 
others to the LLM “agent”. 

 

 
Figure 2 Augment LLM with tool on Client side 

 
Agentic AI is overall a sophisticated system composed of one or more Agents, 

Tools, LLMs and their interconnections all arranged in a manner that allows for Users 
to interact with the system and employ the agents to work in co-ordination with each 
other and with limited oversight to achieve goals that would otherwise be overly complex 
for either a single agent or human. A key trait of an Agentic AI system is that the overall 
workflow or sequence of steps would not always be completely predictable. It should be 
designed in a manner that there is room available for the “Planner Agent” to craft a plan 
with the available Tools to handle a scenario which the System Designer might not have 
foreseen. This is by far one of the biggest advantages of Agentic AI as compared to 
Narrow AI or Traditional Software.  
 
Example: An Agentic AI system could have a Database Connector Tool and an Email 
Connector Tool. Based on just these 2 tools, it could potentially handle a variety of 
situations like but not limited to: 

1. Monitor a support ticket database for unresolved issues and send an internal 
email to the support team to investigate it OR send an external email to the 
customer asking for more details OR perform a RAG on previous support tickets 
and suggest a “try these steps” mail to the customer. Note: that the last option if 
done with enough accuracy can drastically reduce the load on the support team. 



AGENTIC AI 

7 

2. Check inventory database regularly and send an internal emails to the 
procurement team OR be more autonomous and send a purchase email to the 
external vendor directly. 

 
Agentic AI systems unlike traditional AI that relies on predefined instructions, can 

analyse complex situations, create plans, and make decisions without human 
involvement. This allows it to weigh options, assess available tools or sub-agents, and 
come up with solutions on its own. Agentic AI systems may also exhibit a certain degree 
of adaptability where they can observe the error of their ways, reflect and then offer 
course-correction to themselves. Traditional programming involves a team of software 
engineers carefully crafting out code to handle all the different types of scenarios that 
the system is meant to handle. In Agentic AI, the engineers of the system “program” the 
agent(s) with their role and equip them with tools. The actual creation of the plans to 
handle specific scenarios is more or less delegated to the LLMs plus the Agents. It is of 
course possible to fully cement the ways in which multiple agents of an Agentic AI 
system interact with each other. But in that case, we strip the system of the capability to 
handle unforeseen yet valid scenarios. Agentic AI is a philosophy and there are different 
ways to grant agency to a system. We will study some of the key tenets of this as follows. 
 

1.6 ReAct Framework 
ReAct is one of the key design philosophies that forms the foundation of Agentic AI. 

It was described in detail in a whitepaper titled “ReAct : Synergizing Reasoning And 
Acting in Language Models4”. It was published as a conference paper at ICLR 2023. The 
underpinning concept of the paper is that previously LLMs abilities to Reason and Act 
were studied separately. But the ReAct paper focused on generating reasoning traces 
(why a plan was formulated) and task-specific actions (which tools were called and their 
consequence) in an interleaved manner. The Reasoning portion taps into the thinking 
capabilities of the LLM. And in a ReAct approach this interleaves with the Action 
portion where the LLM can tap into tool calling to interact with the real world (e.g.: 
explore a web page, connect to a DB, send an email, execute some code, interact with 
cloud infrastructure). According to the paper, ReAct outperforms imitation and 
reinforcement learning methods by an absolute success rate of 34% and 10% respectively 
for certain datasets. 

 
4 https://arxiv.org/pdf/2210.03629 

https://arxiv.org/pdf/2210.03629
https://arxiv.org/pdf/2210.03629


AGENTIC AI 

8 

 
Figure 3 Essence of the ReAct technique 

 
But why ReAct? In more ways than one, we as a species have observed the divine 

design of the universe and applied the same principles to our creations. For instance, the 
Wright brothers based several of their design decisions for their artificial flying machine 
by observing natural flying ones aka birds. The field of Artificial Intelligence has 
benefitted from a similar observation of Natural Intelligence aka ourselves. When we 
undertake a journey towards a goal, we usually enter a planning stage, take stock of the 
tools at our disposal, engage a feedback loop, reflect on our work, and take a step by 
step approach until we reach the final destination. This shuttling back and forth between 
Reasoning and Acting multiple times until we reach a goal is something we give little 
thought to usually. E.g. consider riding a motorbike to college. You would make a plan 
regarding the route. In some cases, instead of you “thinking” about it, you might just 
retrieve it from prior history (DB lookup). You would constantly use the visual feed 
through your eyes throughout your journey e.g. stop at a red light, avoid obstacles on 
the road. If there is a road-block you would go back to Reasoning mode and find an 
alternative path (Exception Handling). You might use Tools along the way. If you are 
unaware of an alternative path, you might launch Google Maps to aid you. You might 
“phone a friend”. The basic premise is that children are not “programmed” or taught by 
their parents or teachers for each and every scenario that they will encounter in life. They 
are given training on the foundational principles and a finite set of scenarios. Based on 
that learning, they are able to interact with their environment and figure out plans and 
act. Sometimes, the plans might fail. Which helps in fine-tuning the underlying model. 
This is overall the premise of the ReAct philosophy. 

 



AGENTIC AI 

9 

 
Figure 4 Interplay between Reasonings and Actions via Observations 

 
Consider the following situation where an Agentic AI system could leverage ReAct 

philosophy to achieve its goal. Let’s say we are building a smart assistant for a CEO. A 
sample use-case could be where the CEO triggers our assistant and types in “Book me a 
flight so that I can attend the board meeting in person.” Can a plain LLM without tools 
handle this task? No. We need special tools for this scenario. Ideally speaking this agentic 
assistant would need tools like 

• Email Connector: Read the CEO’s email and/or access his calendar and 
determine the date, time and venue of the board meeting. 

• Flight Search & Book: Determine suitable flights from the CEO’s home 
base to the destination city.  

• Payment Handler: Tool to authorize necessary payments. 
Armed with the above tools a well-crafted agent can “reason” and come up with a 

plan. This plan would entail taking “actions” using 1 tool at a time until the final goal is 
achieved. There are other factors at play here like how much autonomy do we want to 
bestow upon this agent. How does the agent “remember” the CEO’s home base or flight 
preferences? We’ll address these and other related questions in the subsequent sections. 

Coming back to the ReAct approach we see that it provides certain other advantages. 
Hallucinations are a major problem for Chain of Thought or just Reasoning. Because 
ReAct employs tools to get information from its environment, the overall probability for 
hallucinating goes down substantially. Having said that, the accuracy of a ReAct system 
has direct correlation with its ability to fetch accurate and relevant information via its 
Tools. Garbage In will lead to Garbage Out. E.g. If a motorist cannot distinguish 
between red and green lights, he’s bound to end up in an accident. So it is of utmost 
importance to ensure that the tools available to a ReAct system function correctly. 

One of the main advantages of the ReAct approach is that it allows systems to break 
free from the shackles of pre-defined rules of workflows. This freedom enables such 
agentic systems to handle unforeseen scenarios. They are able to combine LLM’s 
reasoning with the new information obtained via tool calling to adjust their approach to 
reach the pre-defined goal. This approach would comprise of breaking down a large goal 
into smaller sub-goals or steps. Thus it is usually beneficial to use a larger and smarter 



AGENTIC AI 

10 

model as the central planner to properly reason. The models used to power some of the 
peripheral agents might still employ smaller and faster models though. 

One of the drawbacks of ReAct is that these systems tend to get stuck in a never-
ending loop with the same reasoning and action without making any progress towards 
the goal. Thus it becomes important to program in a “maximum number of loops” or 
an “exit condition”. 

One of the advantages offered by the approach is clear Explainability. The overall 
path chosen by such a system might be complex. Nevertheless, it would still be possible 
to examine the reasoning and action at each and every step of the overall path. This 
makes it easier to debug. 
 

1.7 CodeAct Framework 
One of the key tenets of the ReAct framework is tool calling. For this to work 

properly we need to use select LLMs which can create structured output in the JSON 
format. Not all LLMs support this feature. Also in some scenarios it might take a lot of 
“Plan & Action” turns to arrive at the final goal. There’s another technique that addresses 
some of these issues – CodeAct. 

 
Figure 5 Essence of the CodeAct technique 

 
CodeAct was described in detail in a whitepaper titled “Executable Code Actions 

Elicit Better LLM Agents5”. The central concept of the paper is that LLMs can be used 
to generate code to invoke tools programmatically instead of using JSONs to invoke 
actions. This approach helps us to circumvent several issues. 
 

• First off, almost all LLMs are able to generate code. As such this approach can 
be used to leverage a LLM without traditional tool calling support to be used to 
power a Planner agent.  

• LLMs are usually more capable of generating accurate code rather than just 
generating JSON payloads. This approach improves the overall accuracy of the 
tool invocation as compared to just ReAct. A large corpus of code exists for 
training model to improve CodeAct technique’s accuracy. 

 
5 https://arxiv.org/pdf/2402.01030 

https://arxiv.org/pdf/2402.01030
https://arxiv.org/pdf/2402.01030


AGENTIC AI 

11 

• Allowing the LLM the list of tools and the option to invoke them via code 
presents the opportunity to create code to handle complex scenarios and invoke 
multiple tools in just a single “Action”. E.g.: use a simple for loop or if-else 
ladders interleaved with tool invocations. In the traditional ReAct approach, 
complex scenarios could lead to multiple invocations of various tools one after 
the other. 

• This also opens up the possibility of tapping into pre-written Python libraries 
that can be used in combination with the tools that the agent is equipped with. 
Otherwise, in ReAct it would have become the AI engineer’s responsibility to 
create custom tools to act as a channel or adapter for these libraries. 

• By creating the code and triggering its execution via a Python interpreter the 
LLM can observe any failures or gaps in reaching the goal and self-adjust. The 
fact that a Python interpreter is already battle tested and highlight errors in the 
generated code or its execution work in CodeAct’s favour for correction via 
reflection. 
 

 
Figure 6 CodeAct Framework 

 
LangChain has a library that caters to this framework that can be leveraged with 

LangGraph called as langgraph-codeact6. 
 

1.8 ReAct vs CodeAct 
Consider an arithmetically challenged agent. Let’s equip this fictional agent with 4 

tools – add, subtract, divide and multiple. Each of these tools take 2 operands as input. 
Now, let’s observe what happens when the user provides a simple expression like “25 + 
4 * 9 - 6 / 2” to be calculated via each approach. 

 

 
6 https://github.com/langchain-ai/langgraph-codeact 

https://github.com/langchain-ai/langgraph-codeact


AGENTIC AI 

12 

 
Figure 7 ReAct vs CodeAct 

 

Aspect ReAct CodeAct 

Action Method JSON-formatted tool calls Executable code 

Complexity Multiple back-and-forth steps 
Can handle complex logic in fewer 
steps 

LLM 
Requirements 

Needs JSON tool-calling 
capability 

Works with any code-generating 
LLM 

Error Handling May need multiple attempts Leverages Python's error messages 

Integration Limited to provided tools Can use existing Python libraries 

 
Use ReAct when: 

• You need simple, predictable tool interactions 

• You want clear visibility into each reasoning step 

• Your tools are straightforward and don't require complex logic 
 

Use CodeAct when: 

• You need to process data with loops, conditions, or other complex logic 

• You want to minimize the number of back-and-forth steps 

• You need to leverage existing Python libraries 



AGENTIC AI 

13 

• Your LLM doesn't support structured JSON output 
 
Now that we have analysed these approaches, let’s move on to the different types of 

agents. 
 

1.9 Types of Agents 
There are different types of agents and each of them serves a separate purpose. Let’s 

learn about them in detail: 
1. Planner Agent: This agent analyses the input, considers the tools available at 

its disposal and either plans the next sequence of steps or just the immediate 
next step to be executed. Consider this scenario: The input to the Planner is 
to obtain some information from the web. 3 tools are available to the Planner 
– a Calculator, a Web Scraper and a Python Code Executor. The most 
probable choice over here would be to parse the incoming request and frame 
a request for the Web Scraper tool. It may even be possible in a very special 
scenario that the Planner creates some Python code to scrape from a webpage 
and gets that executed via the Python Code Executor. This is part of the non-
deterministic aspect of an Agentic AI system’s workflow. Usually, the input 
coming into the Agentic AI system would be handled by a Planner agent. 

2. RAG Agent: This agent takes care of doing a similarity search based on the 
task at hand and augments the current prompt with additional system-specific 
context. The goal is to augment the prompt with specific knowledge which is 
not part of the public domain. It achieved Retrieval Augmented Generation 
aka RAG. This could range from the basic naïve RAG to the complex graph 
RAG. E.g. Scenario: There is a query about how to fix a specific issue with a 
bespoke application. The RAG agent can employ a Jira agent to obtain 
relevant remediation steps from a similar past issue. The info obtained thus 
can be used to augment the prompt and be refined by the LLM to tailor it 
into a suitable response for the current query. 

3. Reflection Agent: In several production grade GenAI applications, accuracy 
is more important than being economical or fast. In such cases, a simple way 
to boost accuracy is by using the same LLM or a different one to review the 
prior work created by GenAI. Compare this activity to someone pausing after 
having written an email to review it. The same LLM when put in a different 
mode (i.e. review vs edit) can help uncover issues in its own creation. 

4. HITL Agent: A Human In The Loop agent is merely a provision to allow a 
human SME to interact with the Agentic AI. It could take the form of an 
Agent awaiting a comment to be posted by a human on a Jira issue by tagging 
the Jira agent’s user. It could be handled by the system prompting a question 
to the human on a GUI. The purpose could be to get the human to provide 
course correction during the planning stage. It could also be used to get 
feedback or clarification during any of the various steps that the Agentic AI 
takes to find a balance between complete autonomy and convergence with 
desired outcome. 

 



AGENTIC AI 

14 

Note that some agents might invoke tools. These tools may or may not be powered 
by GenAI. It acts as the hands and feet for the overall Agentic AI system. This could be 
a simple tool like a Calculator for handling Basic Arithmetic (something that LLMs are 
notoriously bad at). It could also be a relatively complex tool that connects to a Database 
and obtains the relevant records. It could act as an adaptor to a GraphQL or Rest API 
that the Agentic AI system needs to interface with. E.g.: a Jira tool that is used to create, 
read, update or delete Jira tickets. 
 

1.10 Types of Agentic AI systems 
Now that we have learnt about the different types of Agents lets delve into different 

types of Agentic AI systems. There are different ways of classifying Agentic AI systems. 
We’ll primarily focus on the Architectural, Workflow and Invocation aspects in this 
section. 

 
Architecture-wise these systems can be classified into: Single Agent with Multiple 

Tools & Multiple Agents with Multiple Tools. 
 
Single Agent with Multiple Tools: This is the most basic type where a single AI 

agent is equipped with and utilizes several tools to accomplish tasks. It is quite basic yet 
powerful. Such systems could be put together easily yet still potentially handle several 
situations which otherwise would take a lot of traditional programming effort. An 
example could be a Planner Agent that is equipped with a DB tool, a Calculator tool and 
an Email tool. It could easily handle scenarios like “Look up the customers who have 
not interacted with us since a quarter and send them an email with a discount offer.” 

 

 
Figure 8 Single Agent with Multiple Tools 

 
Multiple Agents with Multiple Tools: This is the more complex architectural 

variant for Agentic AI systems. This is where the scenarios to be handled are so complex 
that it becomes necessary to break down the overall goal into sub-goals that can be 
addressed by distinct agents each differentiated by a role. Each agent might be equipped 
with different tools suited for the role that the agent is programmed to play. For instance, 
the Ticket Management agent might be equipped with tools to perform CRUD 
operations on a ticketing system like Jira. The Infrastructure Management agent might 



AGENTIC AI 

15 

be equipped with tools to interact with the infrastructure on the cloud e.g.: AWS, Azure, 
GCP, IBM etc. These agents might be programmed to invoke not just the tools but the 
other peer-agents in the eco-system. LLMs are powerful but they cannot do everything. 
It becomes necessary when dealing with complex scenarios to decompose a large 
problem into smaller tasks for an agent to tackle and then pass on to the next agent in 
the graph. 

 
Figure 9 Multiple Agents with Multiple Tools 

 
Now let’s move to another factor on which we can categorize Agentic AI systems. 

Workflow-wise these systems can be classified into: Sequential, Hierarchical and 
Complex systems. 

 

 
Figure 10 Workflow based classification 

 
Sequential: This is where agents are arranged in sequence to achieve a large goal by 

decomposing it into smaller sub-goals and addressing each sub-goal with an agent. The 
output of one agent is passed as input to the next agent. And the output of the final 
agent is passed back to the user. This is very similar to piping used in Linux commands. 
(e.g. cat file.txt | grep "error" | sort ) 

In this type of a system, the workflow is highly deterministic. We know exactly which 
agent is going to be invoked at which stage. The tool choice by each agent is still 
dependent on the input and the LLM’s actual working during each execution. That is the 



AGENTIC AI 

16 

portion that contributes to a small amount of non-determinism to the system’s 
behaviour.  
 

Hierarchical: Wouldn’t it be convenient if we could simply equip one single agent 
with a multitude of tools and let it solve all possible problems? But that’s not practical. 
A single agent is usually not able to do justice to problems once the inherent complexity 
of the problem increases beyond a certain threshold. This threshold does increase based 
on the actual LLM that powers the agent. But it doesn’t disappear completely, not yet at 
least. Like humans, agents are able to achieve more when they collaborate rather than 
work in isolation. 

The easiest way to foster this collaboration amongst agents is to create a hierarchy. 
We program a Planner agent which analyses the input and based on the goal and the 
agents available to it comes up with a detailed plan. Once the problem is decomposed 
into smaller sub-goals, they are handed over to the agents 1 level below the Planner 
agent. These agents work on their own assignments and return the output to the Planner 
agent. The Planner agent’s job becomes to assign tasks, aggregate outputs & decide 
which agents to invoke. The actual paths of this agentic tree that get traversed for each 
execution of the system can be quite different. At the same time, this is what allows this 
type of a system to handle more scenarios as compared to a Sequential system. Do note, 
that the Hierarchical system need not just stop with 2 levels of agents. Each of the agents 
below the Planner agent could have multiple levels of agents available below them to do 
their bidding. 

 
Complex: This is the most non-deterministic variant of Agentic AI systems. In this 

system the task assignments, agent invocations and output aggregation are not reserved 
for just the Planner agent. There was still a certain angle of determinism visible in the 
Hierarchical variation where the agents go back and forth with the Planner agent. In the 
Complex variation, agents are aware of their peers and have accessibility of each other. 
They are able to make use of their peer agents to help them with their tasks. This leads 
to a variety of actual invocation paths that the system may exhibit depending on the 
scenario. This is the most adaptive form of Agentic AI systems. 
 

Next, Invocation-wise these systems can be classified into: Proactive & Reactive 
 

 
Figure 11 Invocation based classification 

 
Proactive: This type of a system does not need to be triggered externally. These are 

the systems which are either continuously or regularly looking at one or more feeds and 
decide whether to act or continue observing. An example could be a system that is 



AGENTIC AI 

17 

constantly going through application logs and jumps into action once it detects an 
anomaly. Another example could be a system that is set to run at a 5 min interval to 
analyse records in a database and act on it. Basically, this system is always in an ON mode 
and observing. When it finds the right scenario, it will act. 

 
Reactive: This type of a system is passive and will not activate unless an external 

trigger puts it in motion. This could be your standard email handling system. There could 
be a connector built with an email inbox that as soon as an email is received it will make 
say an API call to invoke the Agentic AI system to read the email and take the necessary 
action. This system is by default in an OFF mode and runs only when triggered. 

 
These are some of the ways in which we can classify Agentic AI systems. These 

classifications are neither mutually exclusive nor exhaustive. The point is to understand 
these different aspects of Agentic AI systems to provide AI engineers with the adjectives 
to precisely describe a system. E.g. “I’m building a sequential, multi-agent-multi-tool, 
reactive Agentic AI system”. 

 

1.11 Control vs Autonomy 
An important aspect of designing Agentic AI systems is to determine the desired 

balance between Control and Autonomy. Either the system will be fully autonomous or 
fully controlled by the users. But it cannot be both. The job of the architect here becomes 
to gauge the right level of control that would be required for the business use-case. The 
architect then needs to ensure that the system sits appropriately at the right level on the 
spectrum of Human-AI collaboration. There are 3 main decision strategies that we’ll 
explore to better understand this trade-off between these 2 important factors. 
 
Micro-Manage 

In this strategy we favour control over autonomy. The system itself might be capable 
of handling different scenarios. Yet, we enforce restrictions on it to propose its plan to 
the user(s), receive feedback and only then execute the actions. Simply put, it has a 
human placed in between the Reason and Act steps. This strategy affords complete 
oversight. If the user performs all reviews accurately there is no chance of the overall 
system making mistakes. On the flip side, the system can only proceed when a human is 
around to approve/modify the plan proposed by the system. As a result, the speed at 
which the human SMEs (aka Subject Matter Experts) review and interact with the system 
becomes its limiting factor. If the SME is not around, the system can simply not act. If 
the SME does not review accurately, the system might execute an erroneous plan. This 
is the strategy that we select in high-stakes scenarios like medical diagnostics or legal 
document drafting. The overall execution can be best explained by the following 
illustration. 
 



AGENTIC AI 

18 

 
Figure 12 Micro-Manage 

1. The user or some pre-programmed event will trigger or activate the system. 
2. The system (which may be composed of multiple agents and tools) will formulate 

a plan to reach its goal. The plan will be shared with the user for review. 
3. There are 3 broad courses of actions that the user might take. 

a. The user might approve the plan without making any changes.  
b. The user might reject the plan completely.  
c. The user might edit the plan and then approve it.  

4. The system will plan its actions according to the user’s review. 
a. In case of an approval the system will simply execute the unaltered plan. 
b. In case of a rejection the system might lead to inaction and termination 

OR it might go back to the planning step and propose a different plan. 
This depends on how the rejection flow is designed. 

c. In the case of an edit the system will execute the altered plan. 
5. Finally, the outcome of the system’s actions will be conveyed to the user. This 

might be displayed on a screen OR sent via an email OR read out loud etc. 
 

Delegate and Forget 
This strategy is the polar opposite of Micro-Manage. Here a greater value is placed 

on autonomy rather than control. In this strategy, the human relinquishes control over 
the system after granting full responsibility of the outcome to the system. This is possible 
in scenarios where either the cost of failure is minimal OR the accuracy of the system 
has been proved to be extremely high. It maximizes efficiency. Once configured 
properly, it does not need humans to be around to redirect moves or approve actions. 
Hence its highly scalable. Such systems would need a high level of exception handling 
and near-constant automated testing. Since this system is not throttled by the need for 
human review or intervention it is only limited by the system’s ability to reason and act. 
This is the most efficient version of Agentic AI possible. This could be employed for 
internal classification of support tickets. The overall execution can be best explained by 
the following illustration. 

 



AGENTIC AI 

19 

 
Figure 13 Delegate and Forget 

 
1. The user or some pre-programmed event will trigger or activate the system. 
2. The system will formulate a plan to reach its goal. The system itself will self-

review its plan and make any changes deemed necessary. This entire step might 
be repeated multiple times.  

3. The system will action the steps identified in the plan.  
a. Steps 2 and 3 may not always be sequential. Based on the system design 

and the actual scenario there might be multiple possible interweaving of 
Planning and Acting. (E.g. Plan – Act – Plan – Act OR Plan – Act – Act 
– Act – Plan, etc) 

4. Finally, the outcome of the system’s actions will be conveyed to the user. 
 
Delegate and Manage 

This strategy is a hybrid of Micro-Manage and Delegate and Forget. Here, we aim to 
find a sweet spot between the efficiency afforded by autonomy and the reliability 
provided by oversight. Here the system formulates the plan and then arrives at a decision 
either for each plan or for each step of each plan. It will try to determine either based on 
its self-perceived impact of potential failure OR pre-programmed rules whether it is 
allowed to execute the plan on its own OR seek review/permission for a human. The 
basic principle is that for low-risk tasks or scenarios the system might be programmed 
to go ahead with the execution. And likewise for high-risk tasks or scenarios, the system 
might be programmed to seek a review or redirection from the user. So, in essence, it 
will function as a “Delegate and Forget” system for low-risk scenarios. And it will 
function as a “Micro-Manage” system for high-risk scenarios. Obviously, the system will 
need to be taught which scenarios or steps are low-risk and which are high-risk. The 
classification of the steps itself might be left to a LLM or a more stringent rules-based 
engine. Ultimately, the system tries to gain a productivity boost for its users by allowing 
the system to behave autonomously for low-risk or routine tasks or workflows. And it 
allows the users to remain in control for the high-risk ones. It may also so happen that 
over a period of time, the approval of the users is deemed unnecessary due to an 
impeccable reasoning demonstrated by the system. This may also happen due to the 



AGENTIC AI 

20 

system learning over a multitude of interactions with the users about its own mistakes. 
The accuracy of the system’s planning might also simply improve over time due to 
refinements in the overall prompting or advancements in the underlying foundation 
models being employed. A sample scenario could be software development itself. The 
overall execution can be best explained by the following illustration. 

 
 
 

 
Figure 14 Delegate and Manage 

 
1. The user or some pre-programmed event will trigger or activate the system. 
2. The system will formulate a plan to reach its goal. The system will decide whether 

it needs to function autonomously for its next step OR seek review from the 
user. 

3. Based on the decision made in the previous step the system will choose between 
the following 2 options: 

a. The system itself will self-review its plan and make any changes deemed 
necessary.  

b. The system will share the plan with the user for review. 
4. If sent to the user for review, the user might approve/reject/modify the plan. 
5. The system will act on the plan either self-approved by itself or the user. The 

system might repeat steps 2 to 5 multiple times in a different order to reach its 
goal. 

6. Finally, the outcome of the system’s actions will be conveyed to the user. 
 

As we have seen, the 3 different strategies offer different ways of building Agentic AI 
systems. It is up to the AI engineering team to study the requirements and suggest the 
appropriate strategy. It is essential to focus on questions including but not limited to: 

1. What will be impact of the system making an incorrect decision? 



AGENTIC AI 

21 

2. Can mistakes made by the system be corrected by human intervention post 
execution? 

3. Which factors contribute to deciding which step is high risk vs low risk? 
4. What is the risk tolerance for the overall system? 
5. What is the accuracy of the system in different scenarios? 
6. How complex are the sub-tasks that the system will need to execute? 
7. Are user inputs for the system open-ended or restricted? 
8. How fast is the system supposed to respond to requests? 

 
The following chart illustrates the overall relationship between autonomy and 

control. It also indicates the suitability of the different decision strategies.  
 

 
Figure 15 Control vs Autonomy 

 

1.12 Summary 
 

Agentic AI Evolution 
• Traditional Programming: Deterministic, predictable systems with fixed 

rules. 
• Gen AI (Narrow AI): Fixed workflows with some non-deterministic outputs 

(e.g., document summarization). 
• Agentic AI: Highly non-deterministic in both outputs and workflows, 

prioritizing adaptability over predictability. 

 
Narrow AI vs. Agentic AI 

• Narrow AI: Operates within rigid workflows, with limited flexibility and 
predictable paths (e.g., chatbots). 



AGENTIC AI 

22 

• Agentic AI: Features flexible workflows, autonomous decision-making, and 
adaptability for complex tasks (e.g., self-driving cars), boosting productivity by 
reducing human dependency. 

 
Key Concepts 

• Agent: An entity powered by an AI model (often a large language model, 
LLM), equipped with tools, and guided by a goal. Key traits include autonomy, 
decision-making, and goal-oriented behaviour. 

• Agentic AI System: A network of agents, tools, and LLMs working together, 
designed for adaptability and unpredictable workflows to handle unforeseen 
scenarios. 

 
Frameworks 

• ReAct Framework: Interleaves reasoning and acting, using tools to ground 
decisions in real-world interactions, reducing hallucinations and enhancing 
adaptability. 

• CodeAct Framework: Uses code generation to invoke tools, offering greater 
accuracy and flexibility, especially for complex tasks, by leveraging LLMs’ 
coding capabilities. 

 
Types of Agents 

• Planner Agent: Plans steps using available tools. 
• RAG Agent: Retrieves and augments information for context-specific 

responses. 
• Reflection Agent: Reviews and refines system outputs. 
• HITL Agent: Incorporates human feedback for oversight or correction. 

 
Classification of Agentic AI Systems 

• Architecture: 
o Single Agent with Multiple Tools. 
o Multiple Agents with Multiple Tools. 

• Workflow: 
o Sequential: Fixed, step-by-step process. 
o Hierarchical: Planner delegates to sub-agents. 
o Complex: Dynamic agent interactions. 

• Invocation: 
o Proactive: Self-triggers based on monitoring. 
o Reactive: Responds to external triggers. 

Control vs. Autonomy 
• Micro-Manage: High control, human reviews every plan (e.g., medical 

diagnostics). 
• Delegate and Forget: High autonomy, system acts independently (e.g., ticket 

classification). 
• Delegate and Manage: Hybrid approach, system seeks human input for high-

risk tasks while acting autonomously for low-risk ones. 



AGENTIC AI 

23 

 

1.13 Exploratory Questions 
 

1. Can you think of examples that GenAI can handle that traditional ML cannot? 
2. Where would you use CodeAct as opposed to ReAct? 
3. Where in the real world of “human” agents do you see patterns similar to 

Sequential, Hierarchical and Complex patterns? 
4. What are the ethical and financials implications of non-determinism associated 

with GenAI? 
5. What is more valuable – Autonomy (of Agents) or Oversight? How to find the 

balance? 
 
 
 

For  feedback/questions on this content use 
https://cladiusfernando.com/contact/ 

https://cladiusfernando.com/contact/


24 

  


